mail2

Spectrum Library

Multifrequency magnetic resonance elastography of the brain reveals tissue degeneration in neuromyelitis optica spectrum disorder.

Streitberger KJ1,2, Fehlner A3, Pache F4,5, Lacheta A5, Papazoglou S5, Bellmann-Strobl J6, Ruprecht K4, Brandt A5, Braun J7, Sack I3, Paul F4,5,6, Wuerfel J5,6,8.
Abstract

OBJECTIVES:

Application of multifrequency magnetic resonance elastography (MMRE) of the brain parenchyma in patients with neuromyelitis optica spectrum disorder (NMOSD) compared to age matched healthy controls (HC).

METHODS:

15 NMOSD patients and 17 age- and gender-matched HC were examined using MMRE. Two three-dimensional viscoelastic parameter maps, the magnitude |G*| and phase angle φ of the complex shear modulus were reconstructed by simultaneous inversion of full wave-field data in 1.9-mm isotropic resolution at 7 harmonic drive frequencies from 30 to 60 Hz.

RESULTS:

In NMOSD patients, a significant reduction of |G*| was observed within the white matter fraction (p = 0.017), predominantly within the thalamic regions (p = 0.003), compared to HC. These parameters exceeded the reduction in brain volume measured in patients versus HC (p = 0.02 whole-brain volume reduction). Volumetric differences in white matter fraction and the thalami were not detectable between patients and HC. However, phase angle φ was decreased in patients within the white matter (p = 0.03) and both thalamic regions (p = 0.044).

CONCLUSIONS:

MMRE reveals global tissue degeneration with accelerated softening of the brain parenchyma in patients with NMOSD. The predominant reduction of stiffness is found within the thalamic region and related white matter tracts, presumably reflecting Wallerian degeneration.

KEY POINTS:

• Magnetic resonance elastography reveals diffuse cerebral tissue changes in patients with NMOSD. • Premature tissue softening in NMOSD patients indicates tissue degeneration. • Hypothesis of a widespread cerebral neurodegeneration in form of diffuse tissue alteration.